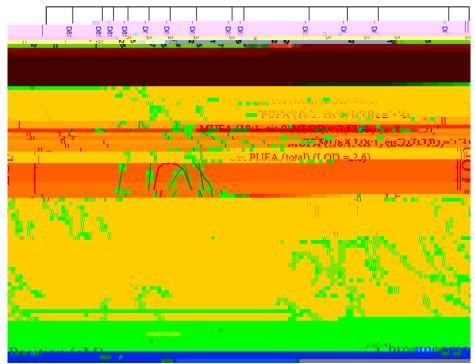
Genetic variation in AOJ, LPL, and TNFRSF10B affects plasma fatty acid distribution in Alaskan Eskimos^{1–3}

SNP (1.0, 1.0) 5 SOLAR^V; (4.0, 1.0) 1 (4.0, 1.0)


$${\bf p}_{P} = {\bf p}_{G} \sqrt{h_{1}^{2}} \sqrt{h_{2}^{2}} + {\bf p}_{E} \left[\sqrt{\left(1 - h_{1}^{2}\right)} \sqrt{\left(1 - h_{2}^{2}\right)} \right]$$

Measured genotype analysis

1.50 TJ/3535.([(C36566() 535.(7)-538,6

Bivariate genetic analysis

B^V; t t 1 5 t 1 Table 3). T SFA n t 5 (C-14) t 1 1 p5 t BMI, t 1 5 t 5 Ln t 5 (C-16) 1 p5

DISCUSSION

11 1 V; 1 1 m FA-5 1 b 1 . I -551 , b 1 SNP - 5-5 1 v 1 . I -5 1 m FA

15 1 -5 QTL m m 8 (8 12 21) 1 1 1 PUFA

TABLE 3 S₁..., t₁..., t₂..., t₃..., t₄..., t₄..., t₅..., t₅..., t₅..., t₆..., t₇..., t₈..., t₈

T .11	T 1 2	± SE	± SE			
M . t 55	BMI	0.552 ± 0.17	0.257 ± 0.04			
	W _ 1	0.433 ± 0.17	0.241 ± 0.04			
	P • •	0.601 ± 0.17	0.260 ± 0.04			
	I 1, 2	0.690 ± 0.26	0.244 ± 0.05			
	HDL 1 1 1	-0.36 ± 0.15	-0.350 ± 0.03			
	T. 1. 🥌	0.732 ± 0.13	0.563 ± 0.03			
Plant 185	Gl_{r} , 2	0.565 ± 0.23	0.193 ± 0.04			
	T., 1. 🥌	0.329 ± 0.13	0.362 ± 0.03			
St	P	-0.357 ± 0.14	-0.165 ± 0.04			
	F 1. 1 1 1	-0.39 ± 0.19	-0.123 ± 0.04			
	HDL 1 1 1	0.41 ± 0.17	0.124 ± 0.04			
	I 1, 2	-0.543 ± 0.25	-0.156 ± 0.05			
	T 1 • • • •	-0.57 ± 0.12	-0.316 ± 0.04			
MUFA, 18:1, -9	F t., , , b	-0.387 ± 0.085 T)(6)T /F51T 1.16660TD(0.12)T /F				

TABLE 4 (=761)

G .	SNP	TFA	MUFA	PUFA	SFA	18:1. 7	7 18:1 -9	18:26	BMI	% F t	W _ ţ	T.1. •5
	35361594	0.226	0.267	0.371	0.767	0.304	0.413	0.206	0.025	0.009	0.043	0.545
	10503814	0.173	0.028	0.017	0.619	0.727	0.381	0.037	0.414	0.165	0.799	0.742
	11136000	0.604	0.364	0.802	0.382	0.509	0.611	0.368	0.002	0.005	0.003	0.04
	1982229	0.992	0.409	0.742	0.916	0.097	0.041	0.388	0.252	0.555	0.126	0.135
	538181	0.033	0.076	0.274	0.584	0.197	0.841	0.279	0.161	0.065	0.600	0.784
	569205	0.032	0.110	0.263	0.505	0.512	0.910	0.385	0.095	0.022	0.390	0.859
	7812347	0.874	0.016	0.722	0.657	0.080	0.024	0.883	0.128	0.032	0.057	0.502
	9331891	0.008	0.188	0.057	0.331	0.295	0.218	0.230	0.780	0.688	0.986	0.073
	1059611	0.172	0.086	0.828	0.975	0.376	0.994	0.041	0.718	0.517	0.253	6.4×10^{-6}
	1121923	0.380	0.199	0.467	0.565	0.863	0.615	0.177	0.024	0.011	0.034	0.636
	13702	0.745	0.023.2(0.331)-2	;	0.565	0.863T 0.3272					× 10

175 t, t, t, t, fl. ... II..., - m. .-3 FA b., ... t 155 t. It -

В	3 10 111 ⁹ ; 1 1 , 1	ro 5 (BOTN) 1	la n	าซีาซี เ ๒. เ	~5 lu	ய என்கிர	8 u u

			M. 11 1 /	M	P b b.1.1	L. J. SNP
Γ_ t	G	SNP	\mathbf{Q}	-	, t 1 t (BQTN)	!
				%		
Γ. t, 1 tt .•5		569205	A/0.484	0.74	0.68	Fl 5' UTR

B^V; 1 1 5 15 1 V; 1 1 1 FA 5 5 1 1 1 S; 1 1 1 S; 1 1 1 S; 1 1 S; 1 1 S; 1

_t __' PUFA 18:2 -6. T __ 1 m, m, l t l t l t l 15 / 15 / 1 II t l t l ... to 1 1 bloo , v. 5 lt (32). , LOD , ... t , v. 1, ... 1 -. . j .. j .. j .. , l j HDL , b . . j .. . (36, 37). I . , , , , SNP 9331891, ... • , , , ... Al 1 1 -LOD , , , 1 1 7 1 1 (36).

- 2001;60:293 300.
- 2001;60:293 300.

 33. R F, B th S. T L t 5, m t t 5, b t ... E 5 R 1 t C 2010;17:R1 17.

 34. H 15 D, Ab v R, H II t P, t I. G m 15 t Al
 ... 15 15 N t G t 2009;41:1088 93.

 35. L mb t JC, H t S, E; G, t I. G m 15 t 1 p5
 ... 1 t CLU 15 CR1 p15 t Al m 15.
 ... N t G 12009;41:1094 9.
- 5 1 V; 1 1 CLU 5 N 1 G 1 2009;41:1094 9.

- 1. 1 1 TRAIL wo 15 11 ... 1. G 1 2007;56: